packages/core/src/Instant.js
/**
* @copyright (c) 2016, Philipp Thürwächter & Pattrick Hüper
* @copyright (c) 2007-present, Stephen Colebourne & Michael Nascimento Santos
* @license BSD-3-Clause (see LICENSE in the root directory of this source tree)
*/
import { requireNonNull, requireInstance } from './assert';
import { DateTimeException, UnsupportedTemporalTypeException } from './errors';
import { Clock } from './Clock';
import { LocalTime } from './LocalTime';
import { ZonedDateTime } from './ZonedDateTime';
import { MathUtil } from './MathUtil';
import { OffsetDateTime } from './OffsetDateTime';
import { Temporal } from './temporal/Temporal';
import { ChronoField } from './temporal/ChronoField';
import { ChronoUnit } from './temporal/ChronoUnit';
import { TemporalQueries } from './temporal/TemporalQueries';
import { TemporalUnit } from './temporal/TemporalUnit';
import { createTemporalQuery } from './temporal/TemporalQuery';
import { DateTimeFormatter } from './format/DateTimeFormatter';
const NANOS_PER_MILLI = 1000000;
/**
* An instantaneous point on the time-line.
*
* This class models a single instantaneous point on the time-line.
* This might be used to record event time-stamps in the application.
*
* Time-scale
*
* The length of the solar day is the standard way that humans measure time.
* This has traditionally been subdivided into 24 hours of 60 minutes of 60 seconds,
* forming a 86400 second day.
*
* Modern timekeeping is based on atomic clocks which precisely define an SI second
* relative to the transitions of a Caesium atom. The length of an SI second was defined
* to be very close to the 86400th fraction of a day.
*
* Unfortunately, as the Earth rotates the length of the day varies.
* In addition, over time the average length of the day is getting longer as the Earth slows.
* As a result, the length of a solar day in 2012 is slightly longer than 86400 SI seconds.
* The actual length of any given day and the amount by which the Earth is slowing
* are not predictable and can only be determined by measurement.
* The UT1 time-scale captures the accurate length of day, but is only available some
* time after the day has completed.
*
* The UTC time-scale is a standard approach to bundle up all the additional fractions
* of a second from UT1 into whole seconds, known as *leap-seconds*.
* A leap-second may be added or removed depending on the Earth's rotational changes.
* As such, UTC permits a day to have 86399 SI seconds or 86401 SI seconds where
* necessary in order to keep the day aligned with the Sun.
*
* The modern UTC time-scale was introduced in 1972, introducing the concept of whole leap-seconds.
* Between 1958 and 1972, the definition of UTC was complex, with minor sub-second leaps and
* alterations to the length of the notional second. As of 2012, discussions are underway
* to change the definition of UTC again, with the potential to remove leap seconds or
* introduce other changes.
*
* Given the complexity of accurate timekeeping described above, this Java API defines
* its own time-scale, the *Java Time-Scale*.
*
* The Java Time-Scale divides each calendar day into exactly 86400
* subdivisions, known as seconds. These seconds may differ from the
* SI second. It closely matches the de facto international civil time
* scale, the definition of which changes from time to time.
*
* The Java Time-Scale has slightly different definitions for different
* segments of the time-line, each based on the consensus international
* time scale that is used as the basis for civil time. Whenever the
* internationally-agreed time scale is modified or replaced, a new
* segment of the Java Time-Scale must be defined for it. Each segment
* must meet these requirements:
*
* * the Java Time-Scale shall closely match the underlying international
* civil time scale;
* * the Java Time-Scale shall exactly match the international civil
* time scale at noon each day;
* * the Java Time-Scale shall have a precisely-defined relationship to
* the international civil time scale.
*
* There are currently, as of 2013, two segments in the Java time-scale.
*
* For the segment from 1972-11-03 (exact boundary discussed below) until
* further notice, the consensus international time scale is UTC (with
* leap seconds). In this segment, the Java Time-Scale is identical to
* [UTC-SLS](http://www.cl.cam.ac.uk/~mgk25/time/utc-sls/).
* This is identical to UTC on days that do not have a leap second.
* On days that do have a leap second, the leap second is spread equally
* over the last 1000 seconds of the day, maintaining the appearance of
* exactly 86400 seconds per day.
*
* For the segment prior to 1972-11-03, extending back arbitrarily far,
* the consensus international time scale is defined to be UT1, applied
* proleptically, which is equivalent to the (mean) solar time on the
* prime meridian (Greenwich). In this segment, the Java Time-Scale is
* identical to the consensus international time scale. The exact
* boundary between the two segments is the instant where UT1 = UTC
* between 1972-11-03T00:00 and 1972-11-04T12:00.
*
* Implementations of the Java time-scale using the JSR-310 API are not
* required to provide any clock that is sub-second accurate, or that
* progresses monotonically or smoothly. Implementations are therefore
* not required to actually perform the UTC-SLS slew or to otherwise be
* aware of leap seconds. JSR-310 does, however, require that
* implementations must document the approach they use when defining a
* clock representing the current instant.
* See {@link Clock} for details on the available clocks.
*
* The Java time-scale is used for all date-time classes.
* This includes {@link Instant}, {@link LocalDate}, {@link LocalTime}, {@link OffsetDateTime},
* {@link ZonedDateTime} and {@link Duration}.
*
* ### Static properties of Class {@link Instant}
*
* Instant.EPOCH
*
* Instant.MIN
*
* Instant.MAX
*
* Instant.MIN_SECONDS
*
* Instant.MAX_SECONDS
*
*/
export class Instant extends Temporal {
/**
* Obtains the current instant from the system clock, or if specified
* the current instant from the specified clock.
*
* This will query the specified clock to obtain the current time.
*
* @param {Clock} [clock=Clock.systemUTC()] - the clock to use, defaults to the system clock
* @return {Instant} the current instant, not null
*/
static now(clock = Clock.systemUTC()){
return clock.instant();
}
/**
* Obtains an instance of {@link Instant} using seconds from the
* epoch of 1970-01-01T00:00:00Z.
*
* @param {number} epochSecond - the number of seconds from 1970-01-01T00:00:00Z
* @param {number} nanoAdjustment nanoseconds start from the start of epochSecond, if null the nanosecond field is set to zero.
* @return {Instant} an instant, not null
* @throws DateTimeException if the instant exceeds the maximum or minimum instant
*/
static ofEpochSecond(epochSecond, nanoAdjustment=0){
const secs = epochSecond + MathUtil.floorDiv(nanoAdjustment, LocalTime.NANOS_PER_SECOND);
const nos = MathUtil.floorMod(nanoAdjustment, LocalTime.NANOS_PER_SECOND);
return Instant._create(secs, nos);
}
/**
* Obtains an instance of {@link Instant} using milliseconds from the
* epoch of 1970-01-01T00:00:00Z.
*
* The seconds and nanoseconds are extracted from the specified milliseconds.
*
* @param {number} epochMilli - the number of milliseconds from 1970-01-01T00:00:00Z
* @return {Instant} an instant, not null
* @throws DateTimeException if the instant exceeds the maximum or minimum instant
*/
static ofEpochMilli(epochMilli) {
const secs = MathUtil.floorDiv(epochMilli, 1000);
const mos = MathUtil.floorMod(epochMilli, 1000);
return Instant._create(secs, mos * 1000000);
}
/**
* Obtains an instance of {@link Instant} using microseconds from the
* epoch of 1970-01-01T00:00:00Z.
*
* @param {number} epochMicro - the number of microseconds from 1970-01-01T00:00:00Z
* @return {Instant} an instant, not null
* @throws DateTimeException if the instant exceeds the maximum or minimum instant
*/
static ofEpochMicro(epochMicro) {
const secs = MathUtil.floorDiv(epochMicro, 1000000);
const mos = MathUtil.floorMod(epochMicro, 1000000);
return Instant._create(secs, mos * 1000);
}
/**
* Obtains an instance of {@link Instant} from a temporal object.
*
* A {@link TemporalAccessor} represents some form of date and time information.
* This factory converts the arbitrary temporal object to an instance of {@link Instant}.
*
* The conversion extracts the {@link ChronoField#INSTANT_SECONDS}
* and {@link ChronoField#NANO_OF_SECOND} fields.
*
* This method matches the signature of the functional interface {@link TemporalQuery}
* allowing it to be used as a query via method reference, {@link Instant::from}.
*
* @param {TemporalAccessor} temporal - the temporal object to convert, not null
* @return {Instant} the instant, not null
* @throws DateTimeException if unable to convert to an {@link Instant}
*/
static from(temporal) {
try {
const instantSecs = temporal.getLong(ChronoField.INSTANT_SECONDS);
const nanoOfSecond = temporal.get(ChronoField.NANO_OF_SECOND);
return Instant.ofEpochSecond(instantSecs, nanoOfSecond);
} catch (ex) {
throw new DateTimeException(`Unable to obtain Instant from TemporalAccessor: ${
temporal}, type ${typeof temporal}`, ex);
}
}
/**
* Obtains an instance of {@link Instant} from a text string such as
* `2007-12-03T10:15:30.000Z`.
*
* The string must represent a valid instant in UTC and is parsed using
* {@link DateTimeFormatter#ISO_INSTANT}.
*
* @param {string} text - the text to parse, not null
* @return {Instant} the parsed instant, not null
* @throws DateTimeParseException if the text cannot be parsed
*/
static parse(text) {
return DateTimeFormatter.ISO_INSTANT.parse(text, Instant.FROM);
}
/**
*
* @param {number} seconds
* @param {number} nanoOfSecond
* @returns {Instant}
* @private
*/
static _create(seconds, nanoOfSecond){
if(seconds === 0 && nanoOfSecond === 0){
return Instant.EPOCH;
}
return new Instant(seconds, nanoOfSecond);
}
/**
*
* @param {number} seconds
* @param {number} nanoOfSecond
* @private
*/
static _validate(seconds, nanoOfSecond){
if (seconds < Instant.MIN_SECONDS || seconds > Instant.MAX_SECONDS) {
throw new DateTimeException('Instant exceeds minimum or maximum instant');
}
if (nanoOfSecond < 0 || nanoOfSecond > LocalTime.NANOS_PER_SECOND) {
throw new DateTimeException('Instant exceeds minimum or maximum instant');
}
}
/**
*
* @param {number} seconds
* @param {number} nanoOfSecond
* @private
*/
constructor(seconds, nanoOfSecond){
super();
Instant._validate(seconds, nanoOfSecond);
this._seconds = MathUtil.safeToInt(seconds);
this._nanos = MathUtil.safeToInt(nanoOfSecond);
}
/**
* Checks if the specified field is supported.
*
* This checks if this instant can be queried for the specified field.
* If false, then calling {@link range} and {@link get} will throw an exception.
*
* If the field is a {@link ChronoField} then the query is implemented here.
* The supported fields are:
*
* * {@link NANO_OF_SECOND}
* * {@link MICRO_OF_SECOND}
* * {@link MILLI_OF_SECOND}
* * {@link INSTANT_SECONDS}
*
* All other {@link ChronoField} instances will return false.
*
* If the field is not a {@link ChronoField}, then the result of this method
* is obtained by invoking {@link TemporalField.isSupportedBy}
* passing `this` as the argument.
* Whether the field is supported is determined by the field.
*
* @param {TemporalField|TemporalUnit} fieldOrUnit - the field to check, null returns false
* @return {boolean} true if the field is supported on this instant, false if not
*/
isSupported(fieldOrUnit) {
if (fieldOrUnit instanceof ChronoField) {
return fieldOrUnit === ChronoField.INSTANT_SECONDS || fieldOrUnit === ChronoField.NANO_OF_SECOND || fieldOrUnit === ChronoField.MICRO_OF_SECOND || fieldOrUnit === ChronoField.MILLI_OF_SECOND;
}
if (fieldOrUnit instanceof ChronoUnit) {
return fieldOrUnit.isTimeBased() || fieldOrUnit === ChronoUnit.DAYS;
}
return fieldOrUnit != null && fieldOrUnit.isSupportedBy(this);
}
/**
* Gets the range of valid values for the specified field.
*
* The range object expresses the minimum and maximum valid values for a field.
* This instant is used to enhance the accuracy of the returned range.
* If it is not possible to return the range, because the field is not supported
* or for some other reason, an exception is thrown.
*
* If the field is a {@link ChronoField} then the query is implemented here.
* The supported fields (see {@link isSupported}) will return
* appropriate range instances.
* All other {@link ChronoField} instances will throw a {@link DateTimeException}.
*
* If the field is not a {@link ChronoField}, then the result of this method
* is obtained by invoking {@link TemporalField.rangeRefinedBy}
* passing `this` as the argument.
* Whether the range can be obtained is determined by the field.
*
* @param {TemporalField} field - the field to query the range for, not null
* @return {ValueRange} the range of valid values for the field, not null
* @throws DateTimeException if the range for the field cannot be obtained
*/
range(field) {
return super.range(field);
}
/**
* Gets the value of the specified field from this instant as an `int`.
*
* This queries this instant for the value for the specified field.
* The returned value will always be within the valid range of values for the field.
* If it is not possible to return the value, because the field is not supported
* or for some other reason, an exception is thrown.
*
* If the field is a {@link ChronoField} then the query is implemented here.
* The supported fields (see {@link isSupported}) will return valid
* values based on this date-time, except {@link INSTANT_SECONDS} which is too
* large to fit in an `int` and throws a {@link DateTimeException}.
* All other {@link ChronoField} instances will throw a {@link DateTimeException}.
*
* If the field is not a {@link ChronoField}, then the result of this method
* is obtained by invoking {@link TemporalField.getFrom}
* passing `this` as the argument. Whether the value can be obtained,
* and what the value represents, is determined by the field.
*
* @param {TemporalField} field - the field to get, not null
* @return {number} the value for the field
* @throws DateTimeException if a value for the field cannot be obtained
* @throws ArithmeticException if numeric overflow occurs
*/
get(field) {
return this.getLong(field);
}
/**
* Gets the value of the specified field from this instant as a `long`.
*
* This queries this instant for the value for the specified field.
* If it is not possible to return the value, because the field is not supported
* or for some other reason, an exception is thrown.
*
* If the field is a {@link ChronoField} then the query is implemented here.
* The supported fields (see {@link isSupported}) will return valid
* values based on this date-time.
* All other {@link ChronoField} instances will throw a {@link DateTimeException}.
*
* If the field is not a {@link ChronoField}, then the result of this method
* is obtained by invoking {@link TemporalField.getFrom}
* passing `this` as the argument. Whether the value can be obtained,
* and what the value represents, is determined by the field.
*
* @param {TemporalField} field - the field to get, not null
* @return {number} the value for the field
* @throws DateTimeException if a value for the field cannot be obtained
* @throws ArithmeticException if numeric overflow occurs
*/
getLong(field) {
if (field instanceof ChronoField) {
switch (field) {
case ChronoField.NANO_OF_SECOND: return this._nanos;
case ChronoField.MICRO_OF_SECOND: return MathUtil.intDiv(this._nanos, 1000);
case ChronoField.MILLI_OF_SECOND: return MathUtil.intDiv(this._nanos, NANOS_PER_MILLI);
case ChronoField.INSTANT_SECONDS: return this._seconds;
}
throw new UnsupportedTemporalTypeException(`Unsupported field: ${field}`);
}
return field.getFrom(this);
}
/**
* Gets the number of seconds from the Java epoch of 1970-01-01T00:00:00Z.
*
* The epoch second count is a simple incrementing count of seconds where
* second 0 is 1970-01-01T00:00:00Z.
* The nanosecond part of the day is returned by {@link getNanosOfSecond}.
*
* @return {number} the seconds from the epoch of 1970-01-01T00:00:00Z
*/
epochSecond(){
return this._seconds;
}
/**
* Gets the number of nanoseconds, later along the time-line, from the start
* of the second.
*
* The nanosecond-of-second value measures the total number of nanoseconds from
* the second returned by {@link getEpochSecond}.
*
* @return {number} the nanoseconds within the second, always positive, never exceeds 999,999,999
*/
nano(){
return this._nanos;
}
//-----------------------------------------------------------------------
/**
* Returns a copy of this instant with the specified field set to a new value.
*
* This returns a new {@link Instant}, based on this one, with the value
* for the specified field changed.
* If it is not possible to set the value, because the field is not supported or for
* some other reason, an exception is thrown.
*
* If the field is a {@link ChronoField} then the adjustment is implemented here.
* The supported fields behave as follows:
*
* * {@link NANO_OF_SECOND} -
* Returns an {@link Instant} with the specified nano-of-second.
* The epoch-second will be unchanged.
* * {@link MICRO_OF_SECOND} -
* Returns an {@link Instant} with the nano-of-second replaced by the specified
* micro-of-second multiplied by 1,000. The epoch-second will be unchanged.
* * {@link MILLI_OF_SECOND} -
* Returns an {@link Instant} with the nano-of-second replaced by the specified
* milli-of-second multiplied by 1,000,000. The epoch-second will be unchanged.
* * {@link INSTANT_SECONDS} -
* Returns an {@link Instant} with the specified epoch-second.
* The nano-of-second will be unchanged.
*
*
* In all cases, if the new value is outside the valid range of values for the field
* then a {@link DateTimeException} will be thrown.
*
* All other {@link ChronoField} instances will throw a {@link DateTimeException}.
*
* If the field is not a {@link ChronoField}, then the result of this method
* is obtained by invoking {@link TemporalField.adjustInto}
* passing `this` as the argument. In this case, the field determines
* whether and how to adjust the instant.
*
* This instance is immutable and unaffected by this method call.
*
* @param {TemporalField} field - the field to set in the result, not null
* @param {number} newValue - the new value of the field in the result
* @return {Instant} an {@link Instant} based on `this` with the specified field set, not null
* @throws DateTimeException if the field cannot be set
* @throws ArithmeticException if numeric overflow occurs
*/
_withField(field, newValue) {
requireNonNull(field, 'field');
if (field instanceof ChronoField) {
field.checkValidValue(newValue);
switch (field) {
case ChronoField.MILLI_OF_SECOND: {
const nval = newValue * NANOS_PER_MILLI;
return (nval !== this._nanos? Instant._create(this._seconds, nval) : this);
}
case ChronoField.MICRO_OF_SECOND: {
const nval = newValue * 1000;
return (nval !== this._nanos? Instant._create(this._seconds, nval) : this);
}
case ChronoField.NANO_OF_SECOND: return (newValue !== this._nanos? Instant._create(this._seconds, newValue) : this);
case ChronoField.INSTANT_SECONDS: return (newValue !== this._seconds ? Instant._create(newValue, this._nanos) : this);
}
throw new UnsupportedTemporalTypeException(`Unsupported field: ${field}`);
}
return field.adjustInto(this, newValue);
}
//-----------------------------------------------------------------------
/**
* Returns a copy of this {@link Instant} truncated to the specified unit.
*
* Truncating the instant returns a copy of the original with fields
* smaller than the specified unit set to zero.
* The fields are calculated on the basis of using a UTC offset as seen
* in {@link toString}.
* For example, truncating with {@link ChronoUnit#MINUTES} will
* round down to the nearest minute, setting the seconds and nanoseconds to zero.
*
* The unit must have a duration (see {@link TemporalUnit#getDuration})
* that divides into the length of a standard day without remainder.
* This includes all supplied time units on {@link ChronoUnit} and
* {@link ChronoUnit#DAYS}. Other units throw an exception.
*
* This instance is immutable and unaffected by this method call.
*
* @param {!TemporalUnit} unit - the unit to truncate to, not null
* @return {Instant} an {@link Instant} based on this instant with the time truncated, not null
* @throws DateTimeException if the unit is invalid for truncation
*/
truncatedTo(unit) {
requireNonNull(unit, 'unit');
if (unit === ChronoUnit.NANOS) {
return this;
}
const unitDur = unit.duration();
if (unitDur.seconds() > LocalTime.SECONDS_PER_DAY) {
throw new DateTimeException('Unit is too large to be used for truncation');
}
const dur = unitDur.toNanos();
if (MathUtil.intMod(LocalTime.NANOS_PER_DAY, dur) !== 0) {
throw new DateTimeException('Unit must divide into a standard day without remainder');
}
const nod = MathUtil.intMod(this._seconds, LocalTime.SECONDS_PER_DAY) * LocalTime.NANOS_PER_SECOND + this._nanos;
const result = MathUtil.intDiv(nod, dur) * dur;
return this.plusNanos(result - nod);
}
//-----------------------------------------------------------------------
/**
* @param {!number} amountToAdd
* @param {!TemporalUnit} unit
* @return {Instant}
* @throws DateTimeException
* @throws ArithmeticException
*/
_plusUnit(amountToAdd, unit) {
requireNonNull(amountToAdd, 'amountToAdd');
requireNonNull(unit, 'unit');
requireInstance(unit, TemporalUnit);
if (unit instanceof ChronoUnit) {
switch (unit) {
case ChronoUnit.NANOS: return this.plusNanos(amountToAdd);
case ChronoUnit.MICROS: return this.plusMicros(amountToAdd);
case ChronoUnit.MILLIS: return this.plusMillis(amountToAdd);
case ChronoUnit.SECONDS: return this.plusSeconds(amountToAdd);
case ChronoUnit.MINUTES: return this.plusSeconds(MathUtil.safeMultiply(amountToAdd, LocalTime.SECONDS_PER_MINUTE));
case ChronoUnit.HOURS: return this.plusSeconds(MathUtil.safeMultiply(amountToAdd, LocalTime.SECONDS_PER_HOUR));
case ChronoUnit.HALF_DAYS: return this.plusSeconds(MathUtil.safeMultiply(amountToAdd, LocalTime.SECONDS_PER_DAY / 2));
case ChronoUnit.DAYS: return this.plusSeconds(MathUtil.safeMultiply(amountToAdd, LocalTime.SECONDS_PER_DAY));
}
throw new UnsupportedTemporalTypeException(`Unsupported unit: ${unit}`);
}
return unit.addTo(this, amountToAdd);
}
/**
* Returns a copy of this instant with the specified duration in seconds added.
*
* This instance is immutable and unaffected by this method call.
*
* @param {number} secondsToAdd the seconds to add, positive or negative
* @return {Instant} an {@link Instant} based on this instant with the specified seconds added, not null
* @throws DateTimeException if the result exceeds the maximum or minimum instant
*/
plusSeconds(secondsToAdd) {
return this._plus(secondsToAdd, 0);
}
/**
* Returns a copy of this instant with the specified duration in milliseconds added.
*
* This instance is immutable and unaffected by this method call.
*
* @param {number} millisToAdd - the milliseconds to add, positive or negative
* @return {Instant} an {@link Instant} based on this instant with the specified milliseconds added, not null
* @throws DateTimeException if the result exceeds the maximum or minimum instant
* @throws ArithmeticException if numeric overflow occurs
*/
plusMillis(millisToAdd) {
return this._plus(MathUtil.intDiv(millisToAdd, 1000), MathUtil.intMod(millisToAdd, 1000) * NANOS_PER_MILLI);
}
/**
* Returns a copy of this instant with the specified duration in nanoseconds added.
*
* This instance is immutable and unaffected by this method call.
*
* @param {number} nanosToAdd - the nanoseconds to add, positive or negative
* @return {Instant} an {@link Instant} based on this instant with the specified nanoseconds added, not null
* @throws DateTimeException if the result exceeds the maximum or minimum instant
*/
plusNanos(nanosToAdd) {
return this._plus(0, nanosToAdd);
}
/**
* Returns a copy of this instant with the specified duration in microseconds added.
*
* This instance is immutable and unaffected by this method call.
*
* @param {number} microsToAdd - the microseconds to add, positive or negative
* @return {Instant} an {@link Instant} based on this instant with the specified microseconds added, not null
* @throws DateTimeException if the result exceeds the maximum or minimum instant
*/
plusMicros(microsToAdd) {
return this._plus(MathUtil.intDiv(microsToAdd, 1000000), MathUtil.intMod(microsToAdd, 1000000) * 1000);
}
/**
* Returns a copy of this instant with the specified duration added.
*
* This instance is immutable and unaffected by this method call.
*
* @param {number} secondsToAdd - the seconds to add, positive or negative
* @param {number} nanosToAdd - the nanos to add, positive or negative
* @return {Instant} an {@link Instant} based on this instant with the specified seconds added, not null
* @throws DateTimeException if the result exceeds the maximum or minimum instant
*/
_plus(secondsToAdd, nanosToAdd) {
if (secondsToAdd === 0 && nanosToAdd === 0) {
return this;
}
let epochSec = this._seconds + secondsToAdd;
epochSec = epochSec + MathUtil.intDiv(nanosToAdd, LocalTime.NANOS_PER_SECOND);
const nanoAdjustment = this._nanos + nanosToAdd % LocalTime.NANOS_PER_SECOND;
return Instant.ofEpochSecond(epochSec, nanoAdjustment);
}
//-----------------------------------------------------------------------
/**
* @param {!number} amountToSubtract
* @param {!TemporalUnit} unit
* @return {Instant}
* @throws DateTimeException
* @throws ArithmeticException
*/
_minusUnit(amountToSubtract, unit) {
return this._plusUnit(-1 * amountToSubtract, unit);
}
/**
* Returns a copy of this instant with the specified duration in seconds subtracted.
*
* This instance is immutable and unaffected by this method call.
*
* @param {number} secondsToSubtract - the seconds to subtract, positive or negative
* @return {Instant} an {@link Instant} based on this instant with the specified seconds subtracted, not null
* @throws DateTimeException if the result exceeds the maximum or minimum instant
*/
minusSeconds(secondsToSubtract) {
return this.plusSeconds(secondsToSubtract * -1);
}
/**
* Returns a copy of this instant with the specified duration in milliseconds subtracted.
*
* This instance is immutable and unaffected by this method call.
*
* @param {number} millisToSubtract - the milliseconds to subtract, positive or negative
* @return {Instant} an {@link Instant} based on this instant with the specified milliseconds subtracted, not null
* @throws DateTimeException if the result exceeds the maximum or minimum instant
* @throws ArithmeticException if numeric overflow occurs
*/
minusMillis(millisToSubtract) {
return this.plusMillis(-1 * millisToSubtract);
}
/**
* Returns a copy of this instant with the specified duration in nanoseconds subtracted.
*
* This instance is immutable and unaffected by this method call.
*
* @param {number} nanosToSubtract the nanoseconds to subtract, positive or negative
* @return {Instant} an {@link Instant} based on this instant with the specified nanoseconds subtracted, not null
* @throws DateTimeException if the result exceeds the maximum or minimum instant
* @throws ArithmeticException if numeric overflow occurs
*/
minusNanos(nanosToSubtract) {
return this.plusNanos(-1 * nanosToSubtract);
}
/**
* Returns a copy of this instant with the specified duration in microseconds subtracted.
*
* This instance is immutable and unaffected by this method call.
*
* @param {number} microsToSubtract the microseconds to subtract, positive or negative
* @return {Instant} an {@link Instant} based on this instant with the specified microseconds subtracted, not null
* @throws DateTimeException if the result exceeds the maximum or minimum instant
* @throws ArithmeticException if numeric overflow occurs
*/
minusMicros(microsToSubtract) {
return this.plusMicros(-1 * microsToSubtract);
}
//-------------------------------------------------------------------------
/**
* Queries this instant using the specified query.
*
* This queries this instant using the specified query strategy object.
* The {@link TemporalQuery} object defines the logic to be used to
* obtain the result. Read the documentation of the query to understand
* what the result of this method will be.
*
* The result of this method is obtained by invoking the
* {@link TemporalQuery#queryFrom} method on the
* specified query passing `this` as the argument.
*
* @param {!TemporalQuery} query - the query to invoke, not null
* @return {*} the query result, null may be returned (defined by the query)
* @throws DateTimeException if unable to query (defined by the query)
* @throws ArithmeticException if numeric overflow occurs (defined by the query)
*/
query(query) {
requireNonNull(query, 'query');
if (query === TemporalQueries.precision()) {
return ChronoUnit.NANOS;
}
// inline TemporalAccessor.super.query(query) as an optimization
if (query === TemporalQueries.localDate() || query === TemporalQueries.localTime() ||
query === TemporalQueries.chronology() || query === TemporalQueries.zoneId() ||
query === TemporalQueries.zone() || query === TemporalQueries.offset()) {
return null;
}
return query.queryFrom(this);
}
/**
* Adjusts the specified temporal object to have this instant.
*
* This returns a temporal object of the same observable type as the input
* with the instant changed to be the same as this.
*
* The adjustment is equivalent to using {@link Temporal#with}
* twice, passing {@link ChronoField#INSTANT_SECONDS} and
* {@link ChronoField#NANO_OF_SECOND} as the fields.
*
* In most cases, it is clearer to reverse the calling pattern by using
* {@link Temporal#with}:
* <pre>
* // these two lines are equivalent, but the second approach is recommended
* temporal = thisInstant.adjustInto(temporal);
* temporal = temporal.with(thisInstant);
* </pre>
*
* This instance is immutable and unaffected by this method call.
*
* @param {!Temporal} temporal - the target object to be adjusted, not null
* @return {Temporal} the adjusted object, not null
* @throws DateTimeException if unable to make the adjustment
* @throws ArithmeticException if numeric overflow occurs
*/
adjustInto(temporal) {
requireNonNull(temporal, 'temporal');
return temporal.with(ChronoField.INSTANT_SECONDS, this._seconds).with(ChronoField.NANO_OF_SECOND, this._nanos);
}
/**
* Calculates the period between this instant and another instant in
* terms of the specified unit.
*
* This calculates the period between two instants in terms of a single unit.
* The start and end points are `this` and the specified instant.
* The result will be negative if the end is before the start.
* The calculation returns a whole number, representing the number of
* complete units between the two instants.
* The {@link Temporal} passed to this method is converted to a
* {@link Instant} using {@link from}.
* For example, the period in days between two dates can be calculated
* using `startInstant.until(endInstant, SECONDS)`.
*
* This method operates in association with {@link TemporalUnit#between}.
* The result of this method is a `long` representing the amount of
* the specified unit. By contrast, the result of {@link between} is an
* object that can be used directly in addition/subtraction:
* <pre>
* long period = start.until(end, SECONDS); // this method
* dateTime.plus(SECONDS.between(start, end)); // use in plus/minus
* </pre>
*
* The calculation is implemented in this method for {@link ChronoUnit}.
* The units {@link NANOS}, {@link MICROS}, {@link MILLIS}, {@link SECONDS},
* {@link MINUTES}, {@link HOURS}, {@link HALF_DAYS} and {@link DAYS}
* are supported. Other {@link ChronoUnit} values will throw an exception.
*
* If the unit is not a {@link ChronoUnit}, then the result of this method
* is obtained by invoking {@link TemporalUnit.between}
* passing `this` as the first argument and the input temporal as
* the second argument.
*
* This instance is immutable and unaffected by this method call.
*
* @param {Temporal} endExclusive - the end date, which is converted to an {@link Instant}, not null
* @param {TemporalUnit} unit - the unit to measure the period in, not null
* @return {number} the amount of the period between this date and the end date
* @throws DateTimeException if the period cannot be calculated
* @throws ArithmeticException if numeric overflow occurs
*/
until(endExclusive, unit) {
requireNonNull(endExclusive, 'endExclusive');
requireNonNull(unit, 'unit');
const end = Instant.from(endExclusive);
if (unit instanceof ChronoUnit) {
switch (unit) {
case ChronoUnit.NANOS: return this._nanosUntil(end);
case ChronoUnit.MICROS: return this._microsUntil(end);
case ChronoUnit.MILLIS: return MathUtil.safeSubtract(end.toEpochMilli(), this.toEpochMilli());
case ChronoUnit.SECONDS: return this._secondsUntil(end);
case ChronoUnit.MINUTES: return MathUtil.intDiv(this._secondsUntil(end), LocalTime.SECONDS_PER_MINUTE);
case ChronoUnit.HOURS: return MathUtil.intDiv(this._secondsUntil(end), LocalTime.SECONDS_PER_HOUR);
case ChronoUnit.HALF_DAYS: return MathUtil.intDiv(this._secondsUntil(end), (12 * LocalTime.SECONDS_PER_HOUR));
case ChronoUnit.DAYS: return MathUtil.intDiv(this._secondsUntil(end), LocalTime.SECONDS_PER_DAY);
}
throw new UnsupportedTemporalTypeException(`Unsupported unit: ${unit}`);
}
return unit.between(this, end);
}
/**
*
* @param {Temporal} end
* @returns {number}
* @private
*/
_microsUntil(end) {
const secsDiff = MathUtil.safeSubtract(end.epochSecond(), this.epochSecond());
const totalMicros = MathUtil.safeMultiply(secsDiff, 1000000);
return MathUtil.safeAdd(totalMicros, MathUtil.intDiv(end.nano() - this.nano(), 1000));
}
/**
*
* @param {Temporal} end
* @returns {number}
* @private
*/
_nanosUntil(end) {
const secsDiff = MathUtil.safeSubtract(end.epochSecond(), this.epochSecond());
const totalNanos = MathUtil.safeMultiply(secsDiff, LocalTime.NANOS_PER_SECOND);
return MathUtil.safeAdd(totalNanos, end.nano() - this.nano());
}
/**
*
* @param {Temporal} end
* @returns {number}
* @private
*/
_secondsUntil(end) {
let secsDiff = MathUtil.safeSubtract(end.epochSecond(), this.epochSecond());
const nanosDiff = end.nano() - this.nano();
if (secsDiff > 0 && nanosDiff < 0) {
secsDiff--;
} else if (secsDiff < 0 && nanosDiff > 0) {
secsDiff++;
}
return secsDiff;
}
//-----------------------------------------------------------------------
/**
* Combines this instant with an offset to create an {@link OffsetDateTime}.
*
* This returns an {@link OffsetDateTime} formed from this instant at the
* specified offset from UTC/Greenwich. An exception will be thrown if the
* instant is too large to fit into an offset date-time.
*
* This method is equivalent to {@link OffsetDateTime#ofInstant}.
*
* @param {ZoneOffset} offset - the offset to combine with, not null
* @return {OffsetDateTime} the offset date-time formed from this instant and the specified offset, not null
* @throws DateTimeException if the result exceeds the supported range
*/
atOffset(offset) {
return OffsetDateTime.ofInstant(this, offset);
}
/**
* Combines this instant with a time-zone to create a {@link ZonedDateTime}.
*
* This returns an {@link ZonedDateTime} formed from this instant at the
* specified time-zone. An exception will be thrown if the instant is too
* large to fit into a zoned date-time.
*
* This method is equivalent to {@link ZonedDateTime#ofInstant}.
*
* @param {ZoneId} zone - the zone to combine with, not null
* @return {ZonedDateTime} the zoned date-time formed from this instant and the specified zone, not null
* @throws DateTimeException if the result exceeds the supported range
*/
atZone(zone) {
return ZonedDateTime.ofInstant(this, zone);
}
//-----------------------------------------------------------------------
/**
* Converts this instant to the number of milliseconds from the epoch
* of 1970-01-01T00:00:00Z.
*
* If this instant represents a point on the time-line too far in the future
* or past to fit in a `long` milliseconds, then an exception is thrown.
*
* If this instant has greater than millisecond precision, then the conversion
* will drop any excess precision information as though the amount in nanoseconds
* was subject to integer division by one million.
*
* @return {number} the number of milliseconds since the epoch of 1970-01-01T00:00:00Z
* @throws ArithmeticException if numeric overflow occurs
*/
toEpochMilli() {
const millis = MathUtil.safeMultiply(this._seconds, 1000);
return millis + MathUtil.intDiv(this._nanos, NANOS_PER_MILLI);
}
//-----------------------------------------------------------------------
/**
* Compares this instant to the specified instant.
*
* The comparison is based on the time-line position of the instants.
* It is "consistent with equals", as defined by {@link Comparable}.
*
* @param {Instant} otherInstant the other instant to compare to, not null
* @return {number} the comparator value, negative if less, positive if greater
* @throws NullPointerException if otherInstant is null
*/
compareTo(otherInstant) {
requireNonNull(otherInstant, 'otherInstant');
requireInstance(otherInstant, Instant, 'otherInstant');
const cmp = MathUtil.compareNumbers(this._seconds, otherInstant._seconds);
if (cmp !== 0) {
return cmp;
}
return this._nanos - otherInstant._nanos;
}
/**
* Checks if this instant is after the specified instant.
*
* The comparison is based on the time-line position of the instants.
*
* @param {Instant} otherInstant the other instant to compare to, not null
* @return {boolean} true if this instant is after the specified instant
* @throws NullPointerException if otherInstant is null
*/
isAfter(otherInstant) {
return this.compareTo(otherInstant) > 0;
}
/**
* Checks if this instant is before the specified instant.
*
* The comparison is based on the time-line position of the instants.
*
* @param {Instant} otherInstant the other instant to compare to, not null
* @return {boolean} true if this instant is before the specified instant
* @throws NullPointerException if otherInstant is null
*/
isBefore(otherInstant) {
return this.compareTo(otherInstant) < 0;
}
/**
* Checks if this instant is equal to the specified instant.
*
* The comparison is based on the time-line position of the instants.
*
* @param {*} other - the other instant, null/ undefined returns false
* @return {boolean} true if the other instant is equal to this one
*/
equals(other) {
if(this === other){
return true;
}
if(other instanceof Instant){
return this.epochSecond() === other.epochSecond() &&
this.nano() === other.nano();
}
return false;
}
/**
* Returns a hash code for this instant.
*
* @return {number} a suitable hash code
*/
hashCode() {
return MathUtil.hashCode(this._seconds, this._nanos);
}
/**
* A string representation of this instant using ISO-8601 representation.
*
* The format used is the same as {@link DateTimeFormatter#ISO_INSTANT}.
*
* @return {string} an ISO-8601 representation of this instant, not null
*/
toString(){
return DateTimeFormatter.ISO_INSTANT.format(this);
}
/**
*
* @return {string} same as {@link LocalDate.toString}
*/
toJSON() {
return this.toString();
}
}
export function _init() {
Instant.MIN_SECONDS = -31619119219200; // -1000000-01-01T00:00:00Z
Instant.MAX_SECONDS = 31494816403199; // +1000000-12-31T23:59:59.999999999Z
Instant.EPOCH = new Instant(0, 0);
Instant.MIN = Instant.ofEpochSecond(Instant.MIN_SECONDS, 0);
Instant.MAX = Instant.ofEpochSecond(Instant.MAX_SECONDS, 999999999);
Instant.FROM = createTemporalQuery('Instant.FROM', (temporal) => {
return Instant.from(temporal);
});
}